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Abstract. In this semnd part of our first-principles study 01 hydrogen in uansition 
metals within the framework of the Born-ppenheimer and the local density-functional 
approximations, the mixed-basis pseudopotential method, which was outlined in the first 
pan. is applied to calculate total energies and internal forces in Pd,H supereells with 
n < 32 and NbnH supercells with n < 4. Adiabatic potentials for H in PdH and 
NbH are determined and the influence of lattice relaxations is discussed. Analytic model 
potentials are fitted to the firsl-principles results, and the imporlance of anharmonicily for 
vibrational states of interstitial H isotopes is investigated. By comparing our calculated 
ribrational energies with results from neutron-scattering experiments, we find that for 
NbH the anharmonicily is weak and the results oblained in harmonic approximation or 
via perturbation theory are in good agreemenl with experiment. For PdH the harmonic 
approximation as well as the penurbation theory are insufficient. The anharmonicily and 
the periodicily of the adiabatic potential need to be represented carefully by a Fourier 
series. Then the agreement with experiment is found to be as good as for NbH and 
even allows us to propose a reinterpretation of the experimental data. 

1. Introduction 

An important field of investigation in basic research as well as in technology is the 
study of hydrogen in metals and intermetallic compounds by virtue of the various 
interesting properties and technical implications (recent reviews were given by VokI 
and Alefeld 1978a,b, Jena and Satterthwaite 1983, Schlapbach 1988). Depending on 
the host metal, it is possible to load the metal lattice with large amounts of hydrogen. 
The hydrogen atoms are distributed over interstitial lattice sites, and they often show 
a high mobility for diffusion. Both the high loading and mobility are important in 
technical applications, for example in the construction of hydrogen fuel storage for 
automobile engines. 

From the viewpoint of basic research, the mechanism of hydrogen diffusion has 
been investigated extensively in both experiment and theory (see the review of Fukai 
and Sugimoto 1985). Microscopically diffusion can be related to local or collective 
vibrations of the light atoms around their interstitial sites (Flynn and Stoneham 1970, 
Kronmiiller er a1 1985). Another property related to these vibrations is the appearance 
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of superconductivity in some metal hydrides like PdH (Skoskiewicz 1972), with a 
distinct inverse isotope effect of T, (Stritzker and Buckel 1972). 

Our present contribution consists of two parts. In the first part given previously 
(Hoer a1 1991, denoted by I), we outlined our mixed-basis formalism for total energies 
and forces in transition-metal systems in the framework of the Born-Oppenheimer 
and local density-functional approximations (BOA and LDA). 

In this second part we present a study at the microscopic level of vibrational states 
of hydrogen isotopes in transition metals by means of first-principles total-energy and 
force calculations (Elsiisser 1990, Elsasser er a1 1991a,b). We restrict ourselves to a 
discussion of the two systems PdH, and NbH,, (+ is the hydrogen concentration), 
which are the most heavily investigated metal-hydrogen systems and therefore allow 
us to check the capability of our computational techniques by comparison with r e  
sults from various experiments and other theories. Although there exists a rather 
large number of publications about first-principles electronic structure calculations 
for metal-hydrogen systems (see e.g. chapter 5 in Schlapbach 19&3), total-energy and 
force calculations are as yet rare. 

Hydrogen in bodycentred cubic (BCC) niobium was studied by one of our groups 
some years ago (Ho er a1 1984, 'Tho er ol 1986). The results for electronic, cohesive, 
diffusion and vibrational properties for the two hydride phases P-NbH and y-NbH 
were in good quantitative accordance with experiments. The success of this work 
motivated us to apply similar techniques to a study of hydrogen in face-centred cubic 
(Fcc) palladium. Different hydrogen concentrations are investigated by using a series 
of cubic supercells Pd,H (n = 1/x = 1,4,8,16,32), where the one interstitial H 
atom per unit cell is considered as a point defect in the host metal. We find that, 
especially for the vibrational properties, PdH turns out to be more complex than NbH 
and necessitates a more sophisticated treatment, which will be described in detail. 

The paper is organized in the following way. In section 2 we give our results 
for the adiabatic potentials of hydrogen in y-NbH and 0-PdH. Calculated forces 
and influences of lattice relaxations in PdH, are described in section 3. Section 4 
contains our calculated results for vibrational states of hydrogen isotopes in the two 
cubic metals and a comparative discussion of our new results for P-PdH with the 
former results for y-NbH ('Tho er a1 1986). 

2. Adiabatic potentials for H in p-PdH and y-NbH 

Pure Pd and PdH, (0 < z < 1) (see chapter 3 in Vijlkl and Alefeld 1978b) have FCC 
crystal lattices. The H atoms occupy stable interstitial sites within regular octahedra 
formed by six Pd atoms (see figure 1). PdH, mainly exists in two phases: Low H 
concentrations (x < 0.1) yield the a phase in which the H atoms are distributed 
randomly over octahedral sites and are well separated from each other by several 
Pd atoms. At high H concentrations (x > 0.6),  the Pd and H atoms form an 
almost stoichiometric compound PdH (p  phase) with the rocksalt structure. For an 
investigation of both phases we performed calculations for several concentrations I 
by using different cubic supercells Pd,H with periodic boundary conditions. The p 
phase is given by a Pd,H unit cell. The isolated H atom in the Pd lattice of the 01 

phase is approached by a series of supercells Pd,H with n = 1/x = 4,8,16,32. 
For H in BcC Nb (see chapter 2 in Volkl and Alefeld lWSb), a series of cubic 

supercells was used correspondingly. The stable interstitial sites for H are in the 
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I -a- a - 
Figure 1. Intenfilial sites and Symmey dirmions in a FCC Pd lattice (left) and in a BCC 
Nb lattice (right); 0. 0, octahedral sites; T T, tetrahedral sites; S111, SIIO,  S, saddle 
poina; a = lattice mnstant 

middle of tetrahedra formed by four Nb atoms (see figure 1). At low concentrations, 
the H atoms are again randomly distributed over tetrahedral sites of the Nb lattice 
and form the Q phase. For high concenvations an orthorhombic p phase is observed 
in experiments. It was shown by previous first-principles total-energy calculations (Tao 
er a1 1986) that this phase is preferred also in theory Over a pseudo-cubic y phase. 
But whereas a hexagonal unit cell containing two Nb and two H atoms (Nb,H,) is 
required to describe the orthorhombic ,B phase, a BCC unit cell with each one Nb 
and one H atom (NbH) is sufficient for the y phase. In chis work we reproduce the 
results of Tao et al (1986) for the y phase. In addition, the cy phase is approached 
by cubic supercells Nb,H (n = 2,4) and lattice relaxations are studied for NbH. 

0 Nb 
-0.01 
0. 

-0.01 
0. 

-0.01 

NbH.Ho t0  

-0.01 NbH,HatT 

20 30 40 50 20 30 40 50 
Epw I R y d l  Ep,CRydl 

Figure 2 Convergence of total energies for Pd and PdH (left) and for Nb and NbH 
(right) with respect lo the number of plane waves in the mixed basis: the total energies 
for Epv = 16.5 Ryd are chosen as zero levels. 

In the calculations for the metal-hydrogen systems, plane waves up to a maximum 
kinetic energy Ib + 61' = Epw were included in the basis set. In addition five d-like 
localized functions per metal atom and one s-like function per H atom were included 
to represent effectively the localized character of-the d and s states. Tb check the 
convergence of total-energy differences with respect to the completeness of the mixed 
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basis, total energies were calculated for Pd and PdH as well as for Nb and NbH 
for fixed lattice constants close to equilibrium as functions of Epw (see figure 2). 
For the hydrides both octahedral and tetrahedral site occupations were considered. 
From Epw = 16.5 Ryd to Epw = 48.5 Ryd the changes in the energy differences 
for the two interstitial positions in the hydrides were less than 1 mRyd, whereas the 
absolute values of the total energies were shifted down by about 18 mRyd for PdH 
and 15 mRyd for NbH. Hence these shifts are almost independent of the H positions 
in the unit cell, and we assume that Epw = 16.5 Ryd is sufficient for calculations of 
energy differences between the different H positions needed to map out the adiabatic 
potentials in the unit cells. 

E(eV1 t 
1.5 SllO 

Nb H - 

.",. , 

T 0 

Fsum 3. Enegy-displacement awes for H in Figure 4 Energy-displacsment ulwes for H in 
PdH ( a  = 4.07 A): origin; octahedral minimum; NbH (a = 3.41 A): origin. tetrahedral minimum: 
T tetrahedral minimum: SIII, Slm. saddle points. 0, Octahedral saddle point; S, saddle poinL 

Table 1. Convergence of cohesive propenier of PdH with respect to lhe number of k 
points in the 16% ag = equilibrium lattice constant; Bo = bulk modulus; Eo = cohesive 
energy 

H positions k points uo (A) Bo (GPa) Eo (e") 

OcL site 10 4.07 208 7.43 
MI 4.07 209 7.42 

'ret. site 10 4.18 175 7.34 
MI 4.17 179 7.43 

For the Brillouin-zone summations, simplecubic grids of sampling points were 
used for all supercells. We found that meshes equivalent to 10 It points in the 
irreducible part of the first Brillouin zone (IBZ) of FCC Pd or eight k poinrs in the 
IEZ of BCC Nb yielded sufficiently converged results for cohesive properties such as 
the equilibrium lattice constants a,, the bulk moduli Bo and the cohesive energies Eo 
(see tables 1 and 2 for PdH and NbH, respectively). These quantities were found by 
calculating total energies for several lattice constants around equilibrium and fitting 
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a universal binding curve (Rose et a1 1981) to these data points. This k-point grid 
was also used for the calculations of forces and relaxations in the supercells. For the 
calculation of the adiabatic potentials and vibration energies of PdH and NbH finer 
grids equivalent to 60 and 40 k points in the FCC and BCC 155 respectively, were 
used. 

Tabk 2. Convergence of cohesive properties of NbH with respect to the number of k 
points m the IBZ for ao, Bo, Eo, see caption of table 1. 

H p i t i o n s  k points a0 (A) Bo (GPa) Eo (ev) 

RI. site 12 3.42 206 12.47 
80 3.41 199 12.46 

OCL site 12 3.44 m 11.93 
80 3.44 186 11.89 

The adiabatic potentials, i.e. the energy hyperfaces E;, for H in PdH and NbH 
were determined by calculating total energies for H put at various positions while 
keeping the metal atom fixed at the origin in the unit cells. We shifted the H atom 
away from an octahedral site in PdH and from a tetrahedral site in NbH along several 
high-symmetry directions (see figure 1). The energy changes are displayed in figure 3 
for PdH and figure 4 for NbH. The curves for PdH have already been discussed 
with respect to the diffision of a classical particle (Elsiisser et 01 1991a). For NbH 
we essentially reproduced the results of Ho et 01 (1984). In figure 4 the curves along 
(110) and (110) are added to point out the saddle point S at a lower energy than 
the octahedral site 0, which itself turns out to be a saddle point in NbH. 

3. Internal foms and lattice relaxations 

In this section we give our results from the application of the mixed-basis force 
formalism described in I to Pd,H supercells. Internal forces acting on the Pd atoms 
around a H atom in the supercells Pd,H with, n = 1,4,8,16,32 were calculated for 
cases where H was located at an octahedral site 0, a tetrahedral site ?; or a saddle 
point SI,,, while the metal atoms were kept at the ideal lattice sites. The lattice 
constants of the supercells were b e d  at the calculated equilibrium value a. = 3.88 A 
of a pure Pd crystal (aexp = 3.89 A). The forces for the Pd,H supercells with H 
at 0 or at T are compiled in table 3 or 4, respectively. The directions of the forces 
on the four Pd neighbour shells of H at 0 and T in Pd,,H supercells are displayed 
in figure 5. In all supercells the directions of the forces fulfill all requirements of 
symmetry and translational periodicity, and we estimate a level of confidence of about 
?~0.005 Ryd/au for the numerical values in tables 1-3. 

Owing to the lattice symmetry the saddle point of the energy along the (111) 
direction is not exactly at the geometrical centre SI,, of a Pd, triangle (see figure 1) 
but slightly shifted towards the octahedral site. Therefore a small force directed 
towards the tetrahedral site is acting on H at S,,,. The geometric pattern of the 
forces for H at Si,, is more complex than for H at the other two positions. But it is 
evident that the forces on the Pd atoms of the Pd, triangle next to H are directed to 
expand it. The forces for the different neighbour shells are given in table 5. 
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Fenre 5. Directions of toms on the 
Pd atoms in Pd32H far H at an wta- 
hednl site (left) and at a letrahedral 
site (right): 0, H atom; e, Pd atoms; 
(1) - (4) denote the four dilferent 
Pd shells (see tables 3 and 4). 

Tnbk 3. Magnitudes of io- F on the Pd atoms around an octahedral H atom in Pd, 
H (Rydlau): d / a  = distance between Pd and H atom in units of the lattice constant 
Q = ao(Pd) = 7.33 au = 3.88 A. 

PdH 0.0 - - - 
Pd4H 0.0 0.0 - - 
PdsH 0.012 0.0 - - 
PdleH 0.012 0.0 0.0 - 
Pd31H 0.002 0.W4 0.008 0.005 

For H at the octahedral site, because of the high symmetry of the supercells, 
non-vanishing forces are only acting on the first-neighbour Pd atoms in the cells with 
TI < 16. Forces on further shells appear in Pd,H. All forces are rather small. This 
means that H on an octahedral site causes only a weak distortion of the Pd lattice. 

For the two other H positions the forces on the fist-neighbour Pd shells are 
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Tabk 4. Magnitudes of forces F on the Pd a t o m  amund a tetrahedral H atom in Pd, 
H (Rydlau): see caption of lable 3. 

PdH 0.0 - - - 
PdrH 0.056 - - - 
P&H 0.063 0.001 - - 
W I S H  0.062 0.007 - - 
Pd32H 0.060 0.003 0.008 0.006 

Tabk 5. Magnitudes of forces F on the Pd atoms around a H atom located at a saddle 
p i n t  SIII in Pd,H (R)%llau): see caption of table 3. 

PdH 0.0 - - - - - 
PdrH 0.W3 0.010 - - - - 
PdsH 0.103 0.011 0.003 - - - 
PdlaH 0.095 0.022 0.009 0.007 - - 
PdmH 0.096 0.012 0.002 0.004 0.M4 0.009 

H 
0 

- 0.0 PdH - - - 
- - 0.002 PdrH - - 

PdsH - 0.001 - - 0.001 
P d s H  - - 0.005 - 0.000 
Pd32H 0.W7 0.010 0.007 0.005 0.000 

distinctly larger than those on the more distant shells. The force on the first shell is 
found to be almost independent of the supercell size. Hence the main reaction of 
the Pd lattice would be an expansion of the first shell. In fact, for the local lattice 
relaxations in Pd,H and Pd8H discussed below (see figure 6) it was sufficient to relax 
the first shell to get negligibly small forces for all shells. 

From the essential independence of the forces on the first-neighbour Pd shell 
of the supercell size, we conclude that relatively small supercells can be useful for 
the modelling of isolated light interstitial particles like H in a transition metal. The 
dominant response of the metal lattice comes from the first-neighbour shell. However, 
the absolute values of the force?. on the outer shells should not be taken too seriously 
because of the small size and the periodic boundary conditions of the supercells. 

In the determination of adiabatic potentials in section 2 (see figures 3 and 4) the 
effects of lattice relaxations were not completely included. The volume of the unit 
cell was relaxed with H at the stable interstitial site and then kept fixed when the H 
was moved around. With the larger supercells Pd,H and Nb,H we can investigate 
the effects of relaxations via atomic displacements. The influence of such relaxations 
on the adiabatic potentials was already discussed earlier (ElsBsser ei ai 1991a). But 
it would be a very laborious and time-consuming task to determine an adiabatic 
potential for Pd,H or Nb,H from first principles with the inclusion of relaxations of 
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Plgurc 6. Energy differenax for H at SIII (left) and a1 T (righl) in PdH, with resped 
to H at site 0 0, Q = ao(Pd) = 3.88 & A, a = a0(PdH.) with H at site 0; 0, a 
relaxed, v. a and Pd alnms relaxed. 

both the volume and the atomic positions. 
To study the effect of different stages of relaxations on the adiabatic potential in 

Pd,H we restrict ourselves again to the energy differences for the special H positions 
at SI,, or at T with respect to H at 0 (see figure 6). For H in the completely 
unrelaxed Pd lattice (a = 3.88 A) the energy differences are large (0) and are 
almost independent of the H concentration. This indicates a relatively weak H-H 
interaction compared to the nearest-neighbour Pd-H interaction. 

The first step of relaxation is an expansion of the unit-cell volume for H at 0 and 
keeping it fixed then for H at SI,, or at T These energy differences (v) correspond 
to the situation in figure 3. The effect is very large for PdH but it decreaes rapidly 
for lower concentrations. By further volume relaxation for H at SI,, or at T the 
energy differences are lowered again but less drastically (0). For PdH this is the fully 
relaxed state. 

For lower H concentrations a further lowering of the energy differences can be 
achieved by local displacements of Pd atoms. This was done by shifting the Pd atoms 
until the calculated forces were negligibly small. As already mentioned above, shifts 
of only the Pd atoms next to the H atom tumed out to be sufficient to reduce all 
forces below the limit of numerical significance. The energy differences for these final 
relaxed unit cells are denoted by A in figure 6. 

For Nb,H (n = 1,2,4)  a similar analysis of the energy differences for H at 0 
or at S with respect to H at T (see figure 7) showed a much weaker influence of 
the volume relaxation for NbH than for PdH. Again, the energy differences for H 
in the unrelaxed Nb lattice ( a  = 3.41 4 0) are essentially independent of the H 
concentration. But now the volume relaxation for H at T yields a lowering of the 
energy differences (A) by only a few per cents already for NbH. By further volume 
relaxations for H at 0 or S the lowerings of the energy differences were negligible. 
This leads us to the assumption that lattice relaxations have a much less important 
influence on the adiabatic potential for H in Nb than in Pd, probably because of the 
more open packing of the BCC crystal lattice. 



Viralional states for interstitial hydrogen isofopes 5215 

Efev l I  

0.7 

0.6 

0.5 

' " -  
0.3 

0.2 

H o t 0  

U 
- 
. 0 

A - 

H o t 5  

- * 
a 

- 

Fleure 7. Enerw differences for H a1 S and at 0.1 1 
~ ~- 

0 in NbH, with rcsped Io H at site I! 0, a = 
a n ( N b )  = 3.23 .% A. (L = an(NbHr) with H at 0. 

'lb test the possibility of a stabilization of the octahedral saddle point by local 
relaxations in a BCC lattice, which is discussed for low H concentrations (Puska 
and Nieminen 1984, Fritzsche er a1 1990), many total-energy calculations for large 
supercells or an alternative approach via a Green function method would be required. 

In our first-principles calculations the atomic nuclei are considered to be point- 
like, i.e. having infinite mass compared to the electrons. For light particles like H 
isotopes, the spatia1 extension of the nuclear wavefunctions has to be considered, e.g. 
for the study of isotope effects in the diffusion or self-trapping of the particles. In 
future studies, we intend to approach such problems by linking our ab initio method 
with an empirical scheme of KJamt and Richler (1986, see also Sugimoto and Fukai 
1982, Puska and Nieminen 1984, Christodoulos and Giiilan 1991) with a fit of the 
empirical parameters to ab inirio data. 

4. Vibrational states for H in 0-PdH and -pNbH 

Vibrational properties of interstitial H in Nb (Richter and Shapiro 1980, Rush et a1 
1981, Eckert el a1 1983) and Pd (Drexel et a1 1976, Rush et a1 1984) single crystals were 
studied experimentally via inelastic neutron scattering (INS; see chapter 4 in Volkl 
and Alefeld 1978b). Line intensities and shapes of the measured excitation spectra 
were commonly interpreted in terms of oscillator states of the light particle in a 
three-dimensional potential well, either in the harmonic approximation (Schober and 
Lottner 1979) or by taking anharmonicity into account via perturbation theory (Eckert 
el a1 1983, Rush el a1 1984). Theoretically, energies and wavefunctions of H vibrational 
states in BCC and FCC metals were calculated using empirical (Sugimoto and Fukai 
1982, Klamt and 'Richler 1986, Christodoulos and Gillan 1991) or parameter-bee 
(Puska and Nieminen 1984) model theories. Although anharmonicity can be taken 
into account beyond perturbation theory in such studies, rather crude approximations 
are necessaly for the interaction potentials, and the parametrization of the empirical 
models strongly depends on accurate experimental data which are usually available 
only for a limited number of systems. 
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Some years ago the vibrational potential and excitation energies for H in the y 
phase NbH were calculated from first principles (Ho er a1 1984, Tho ef a1 19%), and 
the results were in quantitative agreement with the available INS data. The success 
of this work motivated us to apply similar techniques to the case of H in PdH and 
Pd, H (ElsBsser et al 1991b), which revealed a more complicated behaviour. 

In this section we give a comparison of our results for PdH and NbH with em- 
phasis on the importance of anharmonicity. It will be demonstrated that for H on 
tetrahedral sites in Nb the harmonic approximation suffices, whereas for H on octahe- 
dral sites in Pd there is a strong anharmonicity and anisotropy of the potential, and a 
harmonic or perturbative calculation of vibrational states is quantitatively inadequate. 

For the vibrational states in the metal hydrides we assumed the BOA once again 
for the heavy metal atoms and the light hydrogen isotopes. Hydrogen was considered 
to vibrate in a stiff metal lattice. The vibrational states were determined by solving 
the Schrodinger equation of a particle moving in a three-dimensional potential. The 
potential in the BOA was represented by fits of analytical functions V(z, y, z )  to the 
first-principles data (x,y,z are Cartesian coordinates). We applied two different kinds 
of function V(z,y,z). 

In one approach we followed the suggestions given in the literature (Eckert ef a1 
1983, Rush ef ai 1984) for the interpretation of INS spectra via polynomial potential 
wells that are centred at the local potential minima and have the correct point 
symmetries. Up to fourth order in the  Cartesian coordinates, for an octahedral or a 
tetrahedral site in FCC Pd the potential V(z,  y, t) is given by (see appendix 2) 

V ( X ,  Y, 2) = C2(2 + Y2 + 22) t C3"YZ 
+ c4(r4 t Y4 t z4) + CZ2(2Y2 + YZZ2 t Z%Z)  (1) 

with c, = 0 for the octahedral site, and for a tetrahedral site in BCC NbH (see 
appendix 3) by 

V(z,y,z) = c2,=(z2 + Y') + c ~ , ~ z '  + e(='- y2)z 

+ c4,.(z4 + Y4) + c4+z4 + fz2y' + s ( x 2  + Y2)22. (2) 

The coefficients were determined by least-squares fits to nine, seven and 12 first- 
principles data points surrounding a Pd octahedral, tetrahedral and Nb tetrahedral 
site, respectively (see figures 3 and 4). Corrections to the eigenstates of a three- 
dimensional harmonic oscillator (second-order potential terms) due to the anhar- 
monicity of the potentials are calculated using standard perturbation theory (see 
appendices 1-3). The fourth-order potential terms lead to first-order perturbation 
corrections, and the thud-order terms to second-order corrections. 

In an alternative approach a finite, three-dimensional Fourier series was fitted 
to all available energy versus displacement data throughout the whole unit cells (see 
figures 3 and 4): 

V ( r )  = x V ( G ) e x p ( i G . ~ ) .  
G 

(3) 

In contrast to the local potential wells given above, this function takes both the trans- 
lational periodicity of the potential and the saddle points between the different local 
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minima into account. For PdH we fitted the Fourier components of 19 independent 
s t a s  of reciprocal lattice vectors G to the energies of all 30 different H positions 
shown in figure 3. Then the three-dimensional Schrddinger equation for 'H isotopes 
in the periodic potential was expanded in plane waves and diagonalized numerically 
for the r point (k = 0): 

In this approach for PdH, which corresponds to the one described hy "do et a1 (1986) 
for NbH, anharmonicity is treated completely, not as a perturbation. The low-lying 
eigenstates can be associated with the corresponding states lp) found for the 
local potential wells discussed above. 

Eo,looo~, for' three H isotopes are compiled and compared with expenmental data III 
the tables &S. For the ground and the low excited states it is possible to classify the 
states obtained numerically or via perturbation theory by the corresponding states in 
harmonic approximation. The index Af = n + m + 1 gives the number of energy 
quanta, and ]mu) indicates the eigenfunction of the excited state (see appendices 2 
and 3). For NbH we did not repeat the expensive calculation with the Fourier 
potential. Instead we relist the results from "do et a1 (1986) for comparison in our 
table 6. 

The data of table 6 show that for H in Nb the measured vibration energies are 
described already quite well by the local polynomial potential in harmonic approxi- 
mation (a). "dkng the anharmonicity (b) or both anharmonicity and periodicity ((c), 
,from "do et a1 1986) of the potential into account does not improve the agreement of 
the calculation and experiment significantly. It is concluded that the considered lowest 
vibration states are confined to a tetrahedral site in the BCC Nh. The anharmonicity 
is weak and can be treated well via perturbation theory. 

For vibrations of H around the octahedral site in Pd the energies calculated 
with the polynomial potential do not agree with measured INS data, as shown in 
table 7. The harmonic approximation (a) yields energies that are significantly too 
low. By taking the anharmonicity into account via perturbation theory (b) the energies 
become muc. too high. The origin for these discrepancies is the strong anisotropy 
and anharmonicity of the adiabatic potential, which is described poorly by a local 
polynomial function. The perturbative approach is also questionable in the presence 
of strong anharmonicity. In contrast, the vibrational energies calculated with the 
Fourier potential (c), which is not confined to the local surrounding of an octahedral 
site, agree much better with the available INS data. The conclusion is that the 
anharmonicity of the potential needs to be taken into account completely already for 
the lowest states. 

Some remarks are necessary concerning the comparison of calculated and 
measured energies. First, in the INS experiments (Rush et a1 1984) the higher exci- 
tation energies in Pd were measured in a-phase samples with low H concentrations, 
whereas the PdH unit cell used in our calculations corresponds to the p phase with 
high H concentration. In our calculations with Pd,H supercells (n = 4, 8, 16, 32) 
to approach the CY phase (Elsasser et a1 1991a) we found that the decreasing H con- 
centration leads to a reduction of the equilibrium lattice constant of the ideal FCC 
lattice. This is coMeCted with a steeper vibrational potential and higher vibration 

Our calculated zero-point and excitation energies, Eo,looo) and eM,!,,) = 
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Tmbk 6 Z a o - p i n t  enagics E o , l ~ ~ o )  and excitation magics C M , ~ , , )  of local tetrahedral 
vibrations of hydrogen isotopes in NbH ( a  = 3.41 A): ( a )  harmonic nppmximation; 
( b )  pemrbl ion thmy, (c) solution of Fourier representation. The meaning oi IQ) 
is spailled in appendix 3. The Bperimental data are t a k a  from Richta and Shspiro 
(1980). Rush R d (1981) and E&at er d (1983), the calculated data (c )  for yNbH 
from ?go R d (1986). 

89 73 
83 69 
84 70 

e1,toot) (a) 126 
@) 114 
(c) I13 

Expt. 12251 86.750.9 72*1 

%lolo) = elstoo) (a) 176 124 101 

(c) 161 118 98 
@) 1ffi 119 98 

Expt. 166 5 2 120.7 k 0.9 101 5 1 

e w ? )  (a) 253 178 146 
(b) 223 164 136 
(c) 218 161 136 

Expt. 231 5 2  166f3 

ez,liot) = eZ,jo,,) (a) 302 214 174 
196 163 
195 164 

@) 268 
(c) 257 

Expt. 28054 205f5 

energies. By taking lattice relaxations into account we found that local volumes of 
the Pd octahedra around the interstitial H in Pd,H and Pd,H were slightly smaller 
than for H as in PdH. This is consistent with the experimental observation of Rush er 
a1 (1984), where for the Erst excited states of H the measured energies are 69 meV 
for the Q phase and 60 meV for the p phase (see figure 2 in Rush el al 1984). 

Secondly, in the interpretation of their INS spectra, besides the large peak from 
the first excitation, e,,,, Rush et a/ (1984) identified two further structures as three- 
fold degenerate excitations ellO and e,,,, (see figure 1 in Rush et al 1984). In 
a cubic environment, the six degenerate harmonic states with M = 2 split into 
three levels: a triply degenerate, E,,loll) = E,,llol) = Ez,l,l,o), a doubly degener- 
ate, = and a single level, (see appenduc 2). Comparing our 
calculated vibration energies with the INS spectra of Rush ef al (1984) we propose 
the following interpretation (see table 7). The two structures at I37 i 2 meV and 
156 zk 3 meV seem to be the excitations e,,lc) and e,,lA) = e,,lB), respectively. 
The remaining excitations = e,,llol) = e,,,llo) might be located around 115 
f 5 meV where the noise in the spectra does not obviously exclude a thud small 
structure. 

Thirdly, for the lowest vibrational energies of tritium in Pd, one should be aware 
of the fact that the energy range of phonons of the Pd lattice is measured from 
0 to about 23 meV in PdH,,,, (Rowe et a1 1974) and to about 29 meV in pure 
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Tabk 7. Zero-point energies Eo,looo) and excitation energies eM,l,,) of local oclahedral 
vibrations of hydrogen isotopes in PdH (a = 4.07 A): for ( G ) ,  (b), (e); see caption of 
table 6. The meaning of IA), IB) and IC) is specified in appendix 3. Ihe expenmental 
data are taken from Rush n nl (1984); a and p denote the phascs. 

'H 2D 'T 

36 29 
70 52 
51 40 

EOJOOO) (a) 50 
@) 120 
(C) 78 

Expt. 
40 32 

P 60 40 
a 69.0t0.5 46.5f0.5 

(a) 68 47 39 
(b) 344 186 131 
(c) 132 88 69 
a 137h2 

e2,1A) = eZ,lB) (a) 68 47 39 
7.06 144 
94 73 

(b) 383 
(c) 147 

Expt. a 156*3 

Tabk S Zero-point energies Eo,looo) and excitation energies eM,lp) of l o e l  tetrahedral 
vibrations of hydrogen isotopes in PdH (a = 4.07 A): for (a), (a), ( c ) ,  see caption of 
table 6. 

(a) 204 1 4  117 
(b) 208 146 119 
(c) 213 150 123 

E'<* 
0,looo) 

Pd (Miller and Brockhouse 1971). It has been suggested that the localization of 
the tritium vibrations, whose zero-point energies are close to these ranges, can be 
destroyed by resonance with the metal phonons and thus might be not observable 
directly (Oppeneer et a1 1988). 

Besides the H vibrations around stable octahedral sites in PdH, we also investi- 
gated the possibility for metastable H states confined to tetrahedral sites. Wlth the 
polynomial potential, zero-point and first excitation energies were calculated in the 
harmonic approximation and with perturbation theory. They show that the local po- 



5220 C Ekasser et ai 

tential around a tetrahedral site is only weakly anharmonic. In table 8 they are listed, 
together with energies found with the Fourier potential, which can be associated to 
tetrahedral sites via symmetry and convergence arguments. The energies are referred 
to the tetrahedral minimum, which is 51 meV above the octahedral minimum (see 
figure 3). Metastable bound states at tetrahedral sites can be expected at least if the 
zero-point energies are below the depth of the local potential well, which is limited 
by the difference of 215 meV between the minimum at T and the saddle-point energy 
at S,,,. This implies that an occupation of a tetrahedral site is more likely for 3T or 
ZD than for 'H. 

The occupations of interstitial sites in FCC Pd were investigated by means of 
ion channeling experiments (Carstanjen 1989). For PdH, and PdD, at and above 
room temperatures, where the thermal vibration amplitudes of the interstitials around 
octahedral sites are already rather large, no evidence was found for occupations of 
tetrahedral sites. According to our calculations we would expect to find a channelling 
signal along crystalline {loo) directions originating from a few interstitials trapped in 
metastable tetrahedral sites for the isotope 3T and eventually 2D at low temperatures, 
where the (100) blocking originating from octahedral-site occupation is less smeared 
out by the thermal vibrations. An occupation of tetrahedral sites by 3T would also 
be compatible with the observed anomalous isotope effect for activation energies of 
H diffusion in Pd (Teichler 1979, Kronmiiller et ai 1985). 

5. Summary 

In this paper, which is the second of two papers about our first-principles study 
of hydrogen in transition metals, we reported the results of total-energy and force 
calculations for Pd,H supercells with n < 32 and for Nb,H supercells with n < 4, 
using a mixed-basis pseudopotential method, which was outlined in part I. 

Our project was concemed with the development of a calculational method for 
excitation energies of local vibrations of interstitial hydrogen isotopes in transition 
metals. To mt the capability of our approach we chose FCC Pd and BCC Nb for our 
study, the two most heavily investigated metal hosts for hydrogen, with a large pool 
of existing experimental and theoretical information for comparison. 

Within the framework of the BOA and the LDA, adiabatic potentials for H in PdH 
and NbH were determined. The influence of different stages of lattice relaxations 
on the adiabatic potentials in the supercells was discussed. From both total-energy 
differences and internal forces in the supercells we deduced that the dominant con- 
tribution to lattice relaxations around an interstitial H atom in Pd comes from a local 
expansion on the next-neighbour Pd atoms. For H in BCC Nb we found a much 
weaker influence of lattice relaxations on the adiabatic potential than in FCC Pd. 

By fitting analytic model potentials to the adiabatic potentials determined from 
first principles we calculated vibrational states for hydrogen isotopes in 7-NbH and 
in 0-PdH and studied the influence of anharmonicity. 

For NbH we found that excitation energies for several vibrational states, which 
were calculated using a simple local potential wcll in harmonic approximation or 
by taking anharmonicity into account as a perturbation, agreed very well both with 
earlier calculations using a Fourier'fit of the adiabatic potential and a non-perturbative 
treatment of the vibrational states and with measured data from INS experiments. 

For PdH a simple local potential well and the calculation of vibrational states in 
harmonic approximation or via perturbation theory turned out to be quantitatively 
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inadequate. Because of the strong anharmonicity and the rather low vibrational 
energies, the adiabatic potential had to be represented carefully by a Fourier series. 
The excitation energies finally found by solving the proton Schr6dinger equation in a 
plane-wave representation were in good agreement with experimental data and even 
allowed us to propose a reinterpretation of measured INS spectra. 

The success of our calculations for PdH and NbH encourages us to proceed in 
two directions. First, we expect to find reliable vibrational energies as well for other 
metals or intermetallic compounds. These may be of use for the interpretation of 
diffusion experiments, where no INS data are yet available or are difficult to measure, 
e.g. for hydrogen in Fe because of the low solubility, or for tritium in any metal 
because of its toxicity. Second the ab inifio results Seem to be reliable enough to be 
useful for the calibration of more empirical theories. 
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Appendix 1. Perturbation theory for degenerate states 

In this appendix we bhefly summarize the formalism of time-independent perturbation 
theory for partly degenerate vibrational states. One reason is that, although pertur- 
bation theory is well known from almost every lecture or textbook about quantum 
mechanics (see e.g. Blochinzew 1985), its application to vibrational states is rapidly 
becoming laborious. Therefore we want to provide our derived expressions to the 
readership for further use. 

The other and main reason, however, for this appendix is that the splitting of 
degenerate harmonic statm in cubic lattices, which require the rigorous application of 
degenerate perturbation theory, is not fully included in earlier publications (Eckert ef 
al 1983, Rush er al 1984, Kronmiiller et al. 1985, Oppeneer el al 1988). Some authors 
give general formulae for arbitrary states which, however, do not take all splittings 
into account. There are also discrepancies between the formulae in different papers. 
These ambiguities and inconsistencies caused us to rederive carefully the expressions 
for energy corrections of some states, taking the degeneracies into account. Further 
states can be treated in the same way. But we could not find general formulae for 
arbitrary states in cubic lattices that yield all splittings correctly. 

The basic equation for degenerate perturbation theory is the secular equation: 

(Al.l) 

where the potential V, is the anharmonic part of the vibration potential V = Vh+ V,. 
The I&),+) are the eigenstates of the harmonic part ‘V, (zeroth order), with the 
eigenvalues EgL = E2).  The index m labels different harmonic levels, p = 1,. . . ., 
and f,,, the different degenerate states of one level. 
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The first-order energy corrections Ez? are given by the solution of the secular 
deleminanl: 

d e t  l(&~lV&$,?J - E,$?6pvl = 0 (A1.2) 

and the components c’& of the eigenvectors of (Al.1) rotate the zeroth-order basis 
set { [&),)} in the degenerate mth subspace to a new set { }  I+:?) where 

I* 
I d 4 3  = ~ C $ l 4 % )  (A1.3) 

“=l 

for which the perturbation matrix becomes diagonal, 

(+mF (’) IV&$$,) = E2),6,, (A1.4) 

with the first-order energy corrections E$), as diagonal elements. 

summing over all other states ktc (k f m): 
The second-order energy corrections Ec? of the mth state are obtained by 

In the last equation the orthogonality and completeness of the basis sets are used, 
which follow from the hermiticity of the perturbation matrix (&),~V&%,): 

C $ ~ C ; ~  = 6,,,, C ~ ~ C $ ~ ,  = 6y2yJ.  (A1.6) 
Y h 

Appendix 2. Local vibrations of interstitials in a FCC crystal 

The three-dimensional vibrational potential for a light interstitial particle in a FCC 
lattice can be described by a polynomial expansion up to fourth order in Cartesian 
coordinates (Rush e1 a1 1984): 

V ( Z , Y ? Z )  = V,(Z,Y,Z)+ v,(=. ,y,z) (A24 

V h ( Z ,  Y, 2) = C z ( 2  t Y’ t 2’) 

with the harmonic part 

( A 2 4  

and the lowest anharmonic terms: 

v,(z,Y, Z) = C ~ Z W  t c4(z4 + y4 t z4)  t c , , ( z ~ Y ~  t y2zZ + 22). W . 3 )  

The eigenmlues of the harmonic oscillator \ i ( z ,  y, z )  are given by 

Elnm,) =a(% f n  t m +  I) n , m , I = O , 1 , 2  ,... W . 4 )  
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with the energy quantum 

Q = liwo = ti $-- (2cz/mH)’J2 

and the mass mH of a hydrogen isotope. The eigenstates Inmi) of the energy level 
M = R + m + I are f(M + 1)(M + 2)-fold degenerate. In the following we restrict 
ourselves to the states with M = 0, 1,2. 

Applying the formalism of degenerate perturbation theory to the anharmonic po- 
tential V,(x,y, z )  it turns out that the third-order potential term does not contribute 
to the first-order energy corrections E:),,, and for the second-order corrections Eg),, 
the sum in (AIS) can be separated into two sums containing the matrix elements of 
only third- or fourth-order potential terms, respectively. The first-order energy cor- 
rections are proportional to  the potential parameters c3, c4 and cz2, the second-order 
corrections to their squares. The potential parameter c3 is zero for the octahedral 
interstitial site. But for the tetrahedral site in Pd c3 is about one order of magnitude 
larger than c4 and eZ2. This justifies the approximation to neglect the second-order 
corrections originating from c4 and cZz. Hence the following energies EM,lp) for 
the states with M = 0,1 ,2  contain the harmonic energies, the first-order corrections 
due to the fourth-oider potential terms and the second-order corrections due to the 
third-order potential terms: 

Eo,looo) = :a + %P + $y - I 6  

El3ll0O) = E 1 , l O l O )  = E1,lOOl) = $0 + ZP + $7 - 56 

E2,lOll) = E2,llOl) = E2,lllO) = + YP + $? - $6 

EZ,l*) = = $a + $p + 4y - $6 

E2,lq = SLY + 2 p  t $7 - y6 

with the anharmonic coefficients 

p = 3  2xoc4 4 y =  ix4c 2 0 22 6 = 4C”O) 

and x: = h/mHwo. Here [ A ) ,  IB) and IC) are rotated basis states which diagonalize 
the perturbation matrix: 

IA) = ( l / f i ) ( I 2 0 0 )  - 1020)) 

IB) = (I/&)(l200) t 1020) - 21002)) 

IC) = (1/&)(1200) + 1020) + 1002)). 
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Appendix 3. Loeal vibrations of interstitials in a BCC crystal 

For the vibrations of a light particle around a tetrahedral site in a BCC lattice the 
potential is approximated by (Eckert ef ai 1983): 

V ( z , y , z )  = V,(X,Y,.)+ V, (z ,y ,z )  (-43.1) 

with 

Vh(X, Y >  2) = c2,,(z2 + Y2)  + C2,rz2 (-43.2) 

and 

va(z, Y ,  z )  = e(zZ  - y2)z + c4,=(z4 + y4) + c4,.z4 + fz2y2 + g(zz+ y2)z2. 
(543.3) 

For the harmonic oscillator V,( z, y, z )  the energy eigenvalues are given by 

(-43.4) E(o) = hw,(l + n + m) + b,(; + I )  n ,m, l= 0 , 1 , 2 , .  .. 
with the energy quanta 

fw, = h(2c2,,/mH)'fZ fwz = h(2c,,,/mH)'f2 

and the partly degenerate eigenstates Inml). 
As in the case of the FCC lattice only fourth-order potential term yield first- 

order corrections to the energies, and second-order corrections can be separated in 
each a contribution from third- and fourth-order potential terms. The fourth-order 
contribution is again negligibly small compared to the third-order contribution for the 
tetrahedral site in niobium. The resulting energies of the vibration states I@) are 



Ebrutional states for interstitial hydrogen imtopes 5225 

and 
E(’) - 

- ‘ { a +  b +  e +  [ ( U  + b +  c ) ? +  8d 2 ] 1 / 2  1 E2,lP) - 2 
2JA) - - 

(l) 

(1) - 1 2 I f 2  Ez,lQ) - 2 { ~ +  b +  C -  [ ( a +  b +  c ) ~  + P d  1 

a = 4 2 ~ ~ , ~ c :  + 3c4, ,e~  + 5 fe: + 6ge,e, 

b = 6c,,,.5: + 39e4,,e2 + f e z  + 10ge,€, 

} 
with 

c = Z f € :  

d = 2gcXc, .  

The rotated basis states IA), IP), IQ) are given by the linear combinations 
IA) = ( l / f i ) ( 1 2 0 0 )  - 1020)) 

( P )  = (1 / (2p2  + l)”~](plzoo) + plO20) + (002))  

IQ) = [ 1 / ( 2 q 2  + 1)’/21(q1200) + q1020) + 1002)) 
with 

2 1/2 p = (1/4d){a - b +  C +  [ ( U  - b +  c ) ~  + 8d  ] } 
q = ( 1 / 4 d ) { ~ - b + c - [ ( ~ - b + c ) ~ + S d ~ ] ” ~ } .  

For the second-order corrections we find 
*(2) 
0,1000) = 0 

E(2) - 
1 , l O l O )  = A1 + A3 

E(21 
l , ] O O l )  = + A3 

(2) - E(2) 
~ 2 , l O I l )  - 2,1101) = A1 + 2x2 + 4x3 

E2,lllO) = 3x3 

E$$ = A, - A, + 4x3 

1 , l l O O )  - 

( 2 )  

with 
x -- 9 2  p = -4e-.5=ez. P x -  P x -  P 

- hw, - 2hw, - fiw, - 2hwx + hw, 



5226 C Elsasser et ai 

NoU added in proof Klein and Cohen (1591) studied the anharmoninty of hydmgen vibrafions and the 
isotope effect of T, in PdH with a full-potential lApw method. Their and our results for vibrational 
energicr coincide well. 
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