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Absiract. In this second part of our first-principles study of hydrogen in transition
metals within the framework of the Born-Oppenheimer and the local density-functional
approximations, the mixed-basis pseudopotential method, which was outlined in the first
part, is applied to calculate total energies and internal forces in PdnH supercells with
n £ 32 and NbnH supercells with n £ 4. Adiabatic potentials for H in PdH and
NbH are determined and the influence of lattice relaxations is discussed. Analytic model
potentials are fitted to the first-principles results, and the importance of anharmonicity for
vibrational states of interstitial H isotopes is investigated. By comparing our calculated
vibrational energies with results from neutron-scattering experiments, we Bnd that for
NbH the anharmonicity is weak and the results obtained in harmonic approximation or
via perturbation theory are in good agreement with experiment. For PdH the harmonic
approximation as well as the perturbation theory are insufficient. The anharmonicity and
the periodicity of the adiabatic potential need to be represented carefully by a Fourier
series. Then the agreement with experiment is found to be as good as for NbH and
even allows us to propose a reinterpretation of the experimental data.

1. Infroduction

An important field of investigation in basic research as well as in technology is the
study of hydrogen in metals and intermetallic compounds by virtue of the various
interesting properties and technical implications (recent reviews were given by Volki
and Alefeld 1978a,b, Jena and Satterthwaite 1983, Schlapbach 1588). Depending on
the host metal, it is possible to load the metal lattice with large amounts of hydrogen.
The hydrogen atoms are distributed over interstitial lattice sites, and they often show
a high mobility for diffusion. Both the high loading and mobility are important in
technical applications, for example in the construction of hydrogen fuel storage for
automobile engines.

From the viewpoint of basic research, the mechanism of hydrogen diffusion has
been investigated extensively in both experiment and theory (see the review of Fukai
and Sugimoto 1985). Microscopically diffusion can be related to local or collective
vibrations of the light atoms around their interstitial sites (Flynn and Stoneham 1970,
Kronmitller ez a! 1985). Another property related to these vibrations is the appearance
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of superconductivity in some metal hydrides like PdH (Skoskiewicz 1972), with a
distinct inverse isotope effect of T, (Stritzker and Buckel 1972).

Our present contribution consists of two parts. In the first part given previously
(Ho er al 1991, denoted by I), we outlined our mixed-basis formalism for total energies
and forces in transition-metal systems in the framework of the Born-Oppenheimer
and local density-functional approximations (BOA and LDA).

In this second part we present a study at the microscopic Jevel of vibrational states
of hydrogen isotopes in transition metals by means of first-principles total-energy and
force calculations (Elsiisser 1990, Elsdsser et af 1991a,b). We restrict ourselves to a
discussion of the two systems PdH_ and NbH_, (= is the hydrogen concentration),
which are the most heavily investigated metal-hydrogen systems and therefore allow
us to check the capability of our computational techniques by comparison with re-
sults from various experiments and other theories. Although there exists a rather
large number of publications about first-principles electronic structure calculations
for metal-hydrogen systems (see e.g. chapter 5 in Schlapbach 1988), total-energy and
force calculations are as yet rare.

Hydrogen in body~centred cubic (BCC) niobium was studied by one of our groups
some years ago (Ho et al 1984, Tao er al 1986). The results for electronic, cohesive,
diffusion and vibrational properties for the two hydride phases 5-NbH and ~-NbH
were in good quantitative accordance with experiments. The success of this work
motivated us to apply similar techniques to a study of hydrogen in face-centred cubic
(Fcc) palladium. Different hydrogen concentrations are investigated by using a series
of cubic supercells Pd, H (n = 1/x = 1,4,8,16,32), where the one interstitial H
atom per unit cell is considered as a point defect in the host metal. We find that,
especially for the vibrational properties, PdH turns out to be more complex than NbH
and necessitates a more sophisticated treatment, which will be described in detail.

The paper is organized in the following way. In section 2 we give our results
for the adiabatic potentials of hydrogen in +-NbH and 3-PdH. Calcuiated forces
and influences of lattice relaxations in PdH_ are described in section 3. Section 4
contains our calculated results for vibrational states of hydrogen isotopes in the two
cubic metals and a comparative discussion of our new results for G-PdH with the
former results for 4-NbH (Tao er af 1986).

2. Adiabatic potentials for H in 3-PdH and ~-NbH

Pure Pd and PdH_ (0 < = < 1) (see chapter 3 in VOlkl and Alefeld 1978b) have Fcc
crystal lattices. The H atoms occupy stable interstitial sites within regular octahedra
formed by six Pd atoms (see figure 1). PdH_ mainly exists in two phases: Low H
concentrations (x < 0.1) yield the o phase in which the H atoms are distributed
randomly over octahedral sites and are well separated from each other by several
Pd atoms. At high H concentrations (z > 0.6), the Pd and H atoms form an
almost stoichiometric compound PdH (3 phase) with the rocksalt structure. For an
investigation of both phases we performed calculations for several concentrations x
by using different cubic supercells Pd,, H with periodic boundary conditions. The /3
phase is given by a Pd,H unit cell. The isolated H atom in the Pd lattice of the o
phase is approached by a series of supercells Pd, H with n = 1 /2 = 4,8,16, 32.
For H in BCcc Nb (see chapter 2 in V§Ikl and Alefeld 1978b), a series of cubic
supercells was used correspondingly. The stable interstitial sites for H are in the
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Figure 1. Interstitial sites and symmetry directions in 2 Fcc Pd lattice (left) and in a BoC
Nb lattice (right); O, O, octahedral sites; T, T, tetrahedral sites; S111, S110, S, saddle
points; a = lattice constant,

middle of tetrahedra formed by four Nb atoms (see figure 1). At low concentrations,
the H atoms are again randomly distributed over tetrahedral sites of the Nb lattice
and form the « phase. For high concentrations an orthorhombic 3 phase is observed
in experiments. It was shown by previous first-principles total-energy calculations (Tao
et al 1986) that this phase is preferred also in theory over a pseudo-cubic + phase.
But whereas a hexagonal unit cell containing two Nb and two H atoms (Nb,H,) is
required to describe the orthorhombic @ phase, a BCC unit cell with each one Nb
and one H atom (NbH) is sufficient for the v phase. In this work we reproduce the
results of Tao et al (1986) for the -« phase. In addition, the o phase is approached
by cubic supercells Nb_ H (» = 2, 4) and lattice relaxations are studied for NbH.
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Figure 2. Convergence of total energies for Pd and PdH (left) and for Nb and NbH
(right) with respect to the number of plane waves in the mixed basis; the total energies
for Epw = 15,5 Ryd are chosen as zero levels,

In the calculations for the metal-hydrogen systems, plane waves up to a maximum
kinetic energy |k + G|* = E,,, were included in the basis set, In addition five d-like
localized functions per metal atom and one s-like function per H atom were included
to represent effectively the localized character of the d and s states. Tb check the
convergence of total-energy differences with respect to the completeness of the mixed
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basis, total energies were calculated for Pd and PdH as well as for Nb and NbH
for fixed lattice constants close to equilibrium as functions of E,,. (see figure 2).
For the hydridcs both octahedral and tetrahedral site occupations were considered.
From E,, = 165 Ryd w0 E,, = 485 Ryd the changes in the energy differences
for the two mterst:txal pomtlons in the hydrides were less than 1 mRyd, whereas the
absolute values of the total energies were shifted down by about 18 mRyd for PdH
and 15 mRyd for NbH. Hence these shifts are almost independent of the H positions
in the unit cell, and we assume that E . = 16.5 Ryd is sufficient for calculations of
energy d:ﬂ'erences between the different H positions needed to map out the adiabatic

potentials in the unit cells.
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Figure 4. Energy—displacement curves for H in
NbH (e = 3.41 A): origin, tetrabedral minimum;
O, octahedral saddle point; §, saddle poinL

Figure 3. Energy-displacement curves for H in
PdH (z = 4.07 A): origin; octahedral minimum;
T, teirahedral minimum; S;y1, 8110, saddle points.

Table 1. Convergence of cohesive properties of PAdH with respect to the number of k
points in the IBZ; ap = equilibrium lattice constant; By = bulk modulus; Ep = cohesive

energy.

H positions % points  ag (A)  Bo (GPa) Eg (V)

Oct site 10 4.07 208 743
60 4.07 209 742
Tet. site 10 4.18 175 734
60 4.17 179 743

For the Brillovin-zone summations, simple-cubic grids of sampling points were
used for all supercells. We found that meshes equivalent to 10 k& points in the
irreducible part of the first Brillouin zone (IBZ) of FCC Pd or eight & points in the
18Z of BCC Nb yielded sufficiently converged results for cohesive properties such as
the equilibrium lattice constants a,, the bulk moduli B, and the cohesive energies E,
(see tables 1 and 2 for PdH and NbH, respectively). These quantities were found by
calculating total energies for several lattice constants around equilibrium and fitting
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a universal binding curve (Rose er a/ 1981) to these data points. This k-point grid
was also used for the caiculations of forces and relaxations in the supercells. For the
caiculation of the adiabatic potentials and vibration energies of PdH and NbH finer
grids equivalent to 60 and 40 & points in the FCC and BCC IBZ, respectively, were
used.

Table 2. Convergence of cohesive properties of NbH with respect to the number of k
points in the IBZ for eq, Bp, Ep, see caption of table 1.

H positions  k points  ag (A) Bp (GPa) Eo (eV)

Tet. site 12 3.42 206 12.47
80 3.41 199 1246
OctL. site 12 344 240 11.93
80 344 186 11.89

The adiabatic potentials, i.e. the energy hyperfaces EJ, for H in PdH and NbH
were determined by caiculating total energies for H put at various positions while
keeping the metal atom fixed at the origin in the unit cells. We shifted the H atom
away from an octahedral site in PdH and from a tetrahedral site in NbH along several
high-symmetry directions (see figure 1). The energy changes are displayed in figure 3
for PAH and figure 4 for NbH. The curves for PdH have already been discussed
with respect to the diffusion of a classical particle (Elstisser et a/ 1991a). For NbH
we essentially reproduced the results of Ho et al (1984). In figure 4 the curves along
{(110) and {110) are added to point out the saddle point S at a lower energy than
the octahedral site O, which itself turns out to be a saddle point in NbH.

3. Internal forces and lattice relaxations

In this section we give our results from the application of the mixed-basis force
formalism described in I to Pd_ H supercells. Internal forces acting on the Pd atoms
around 2 H atom in the supercells Pd_H with n = 1,4,8, 16,32 were calculated for
cases where H was located at an octahedral site O, a tetrahedral site T, or a saddle
point S,;,, while the metal atoms were kept at the ideal lattice sites. The lattice
constants of the supercells were fixed at the calculated cquilibrium value a, = 3.88 A
of a pure Pd crystal (a.,, = 3.89 A). The forces for the Pd, H supercells with H
at O or at T are compiled in table 3 or 4, respectively. The directions of the forces
on the four Pd neighbour shells of H at O and T in Pd;,H supercells are displayed
in figure 5. In all supercells the directions of the forces fulfill all requirements of
symmetry and translational periodicity, and we estimate a level of confidence of about
=+0.005 Ryd/au for the numerical values in tables 1-3.

Owing to the lattice symmetry the saddle point of the energy along the (111)
direction is not exactly at the geometrical centre S,,; of a Pd, triangle (see figure 1)
but slightly shifted towards the octahedral site. Therefore a small force directed
towards the tetrahedral site is acting on H at $;,,. The geometric pattern of the
forces for H at S,,, is more compiex than for H at the other two positions. But it is
evident that the forces on the Pd atoms of the Pd, triangle next to H are directed to
expand it. The forces for the different neighbour shells are given in table 5.
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Figure 5. Directions of forces on the
Pd atoms in Pds:H for H at an octa-
hedral site (left) and at a tetrahedral
site (right): o, H atom; e, Pd atoms;
(1) = (4) denote the four different
Pd shells (see tables 3 and 4).

Table 3. Magnitudes of forces F' on the Pd atoms around an octahedral H atom in Pd,
H (Ryd/au): dfe = distance between Pd and H atom in units of the lattice constant
a = ag{Pd) = 7.33 au=3.88 A.

Shell ¢} (2 »  ®»
R R Y
PdH 0.0 — —_ = ” B

Pd H 0.0 0.0 —_ — .
PdzH 0012 00 — —_ -
PdygH 0012 0.0 0.0 _— e e
PdsoH 0002 0.004 0008 0005

For H at the octahedral site, because of the high symmetry of the supercells,
non-vanishing forces are only acting on the first-neighbour Pd atoms in the cells with
n < 16. Forces on further shells appear in Pdy,H. All forces are rather small. This
means that H on an octahedral site causes only a weak distortion of the Pd lattice.

For the two other H positions the forces on the first-neighbour Pd shells are
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Table 4. Magnitudes of forces £ on the Pd atoms around a tetrahedral H atom in Pd,
H (Ryd/au): sec caption of table 3.

Shell 1) (2 &) O]
dfa Vi TT LVT9 33
PAH 00  — — —
Pd.H 0056 — — —

PdgH 0.063 0.001 —_ —_
Pd:sH 0062 0007 — —
Pd3H 0.060 0.003 0.008 0.006

Table 5. Magnitudes of forces F on the Pd atoms around a H atom located at a saddle
point 8311 in Pd,H (Ryd/zu): see caption of table 3.

sl M @ @ @ & _ @
da  WE IVE iE WE  IVE 1

PdH 0.0 —_ - - — -
Pd H 0.093 0010 — —_ — -
PdsH 0.105 00i1 6003 — — -
PdygH 0095 0022 0009 0007 — —
PdszH  0.096 0.012 0002 0004 0.604 0.009

Shell D ® ) (10) H
dfa AVZ TR TS R IV VT 0
PdH - - - - 0.0
PdH  — _ - - 0.002
PgH  — 0001 — — 0.001
PdjeH — — 0005 — 0.000
Pd;oH Q007 0010 0007  0.005 0.000

distinctly larger than those on the more distant shells. The force on the first shell is
found to be almost independent of the supercell size. Hence the main reaction of
the Pd lattice would be an expansion of the first shell. In fact, for the local lattice
relaxations in Pd,H and Pd H discussed below (see figure 6) it was sufficient to relax
the first shell to get negligibly small forces for all shells.

From the essential independence of the forces on the first-neighbour Pd shell
of the supercell size, we conclude that relatively small supercells can be useful for
the modelling of isolated light interstitial particles like H in a transition metal. The
dominant response of the metal lattice comes from the first-neighbour shell. However,
the absolute values of the forces on the outer shells should not be taken too seriously
because of the small size and the periodic boundary conditions of the supercells.

In the determination of adiabatic potentials in section 2 (see figures 3 and 4) the
effects of lattice relaxations were not completely included. The volume of the unit
cell was relaxed with H at the stable interstitial site and then kept fixed when the H
was moved around. With the larger supercells Pd H and Nb,H we can investigate
the effects of relaxations via atomic displacements. The influence of such relaxations
on the adiabatic potentials was already discussed earlier (Elsdsser e af 1991a). But
it would be a very laborious and time-consuming task to determine an adiabatic
potential for P4, H or Nb_ H from first principles with the inclusion of relaxations of
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Figure 6. Energy differences for H at ;13 (left) and at T (right} in PdH_ with respect
to H at site O: O, o = ao( Pd) = 3.88 A; A, a = ag(PdH,) with H at site 0; o, ¢
relaxed; 57, a and Pd atoms relaxed.

both the volume and the atomic positions.

To study the effect of different stages of relaxations on the adiabatic potential in
Pd_ H we restrict ourselves again to the energy differences for the special H positions
at 5,,;, or at T with respect to H at O (sec figure 6). For H in the compietely
unrelaxed Pd lattice (¢ = 3.88 A) the energy differences are large (O) and are
almost independent of the H concentration. This indicates a relatively weak H-H
interaction compared to the nearest-neighbour Pd-H interaction.

The first step of relaxation is an expansion of the unit-cell volume for H at O and
keeping it fixed then for H at §;;, or at T. These energy differences (57) correspond
to the situation in figure 3. The effect is very large for PdH but it decreases rapidly
for lower concentrations. By further volume relaxation for H at 5,,; or at T the
energy differences are lowered again but less drastically (¢). For PdH this is the fully
relaxed state.

For lower H concentrations a further lowering of the energy differences can be
achieved by local displacements of Pd atoms. This was done by shifting the Pd atoms
until the calculated forces were negligibly small. As already mentioned above, shifts
of only the Pd atoms next to the H atom turned out to be sufficient to reduce all
forces below the limit of numerical significance. The energy differences for these final
relaxed wnit cells are denoted by A in figure 6.

For Nb, H (n = 1,2,4) a similar analysis of the energy differences for H at O
or at S with respect to H at T (see figure 7) showed a2 much weaker influence of
the volume relaxation for NbH than for PAH. Again, the energy differences for H
in the unrelaxed Nb lattice (a = 3.41 A, O) are essentially independent of the H
concentration. But now the volume relaxation for H at T yields a lowering of the
energy differences (A) by only a few per cents already for NbH. By further volume
relaxations for H at O or S the lowerings of the energy differences were negligible.
This leads us to the assumption that lattice relaxations have a much less important
influence on the adiabatic potential for H in Nb than in Pd, probably because of the
more open packing of the BCC crystal lattice.
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To test the possibility of a stabilization of the octahedral saddle point by local
relaxations in a BCC lattice, which is discussed for low H concentrations (Puska
and Nieminen 1984, Fritzsche et a/ 1990), many total-energy calculations for large
supercells or an alternative approach via a Green function method would be required.

In our first-principles calculations the atomic nuclei are considered to be point-
like, ie. having infinite mass compared to the electrons. For light particles like H
isotopes, the spatial extension of the nuclear wavefunctions has to be considered, e.g.
for the study of isotope effects in the diffusion or self-trapping of the particles. In
future studies, we intend to approach such problems by linking our ab initic method
with an empirical scheme of Klamt and Teichler (1986, see also Sugimoto and Fukai
1982, Puska and Nieminen 1984, Christodoulos and Gillan 1991) with a fit of the
empirical parameters to ab initio data. '

4, Vibrational states for H in #-PdH and ~-NbH

Vibrational properties of interstitial H in Nb (Richter and Shapiro 1980, Rush et al
1981, Eckert et af 1983) and Pd (Drexel ef al 1976, Rush ef al 1984} single crystals were
studied experimentally via inelastic neutron scattering (INS; see chapter 4 in Volki
and Alefeld 1978b). Line intensities and shapes of the measured excitation spectra
were commonly interpreted in terms of oscillator states of the light particle in a
three-dimensional potential well, either in the harmonic approximation (Schober and
Lottner 1979) or by taking anharmonicity into account via perturbation theory (Eckert
et al 1983, Rush er al 1984). Theoretically, energies and wavefunctions of H vibrational
states in BCC and FCC metals were calculated using empirical (Sugimoto and Fukai
1982, Klamt and Teichler 1986, Christodoulos and Gillan 1991) or parameter-free
(Puska and Nieminen 1984) model theories. Although anharmonicity can be taken
into account beyond perturbation theory in such studies, rather crude approximations
are necessary for the interaction potentials, and the parametrization of the empirical
models strongly depends on accurate experimental data which are usually available
only for a limited number of systems.
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Some years ago the vibrational potential and excitation energies for H in the «
phase NbH were calculated from first principles (Ho et al 1984, Tao et af 1586), and
the results were in quantitative agreement with the available INS data. The success
of this work motivated us to apply similar techniques to the case of H in PdH and
Pd,H (Elsisser et al 1991b), which revealed a more complicated behaviour.

In this section we give a comparison of our results for PdH and NbH with em-
phasis on the importance of anharmonicity. It will be demonstrated that for H on
tetrahedral sites in Nb the harmonic approximation suffices, whereas for H on octahe-
dral sites in Pd there is a strong anharmonicity and anisotropy of the potential, and a
harmonic or perturbative calculation of vibrational states is quantitatively inadequate.

For the vibrational states in the metal hydrides we assumed the BOA once again
for the heavy metal atoms and the light hydrogen isotopes. Hydrogen was considered
to vibrate in a stiff metal lattice. The vibrational states were determined by solving
the Schrédinger equation of a particle moving in a three-dimensional potential. The
potential in the BOA was represented by fits of analytical functions V(z,y, z) to the
first-principles data (x,y,z are Cartesian coordinates). We applied two different kinds
of function V(z,y, z).

In one approach we followed the suggestions given in the literature (Eckert ef a!
1983, Rush er al 1984) for the interpretation of INS spectra via polynomial potential
wells that are centred at the local potential minima and have the correct point
symmetries. Up to fourth order in the Cartesian coordinates, for an octahedral or a
tetrahedral site in FCC Pd the potential V' (x, y, z) is given by (see appendix 2)

Viz,y,z) = 62(332 + 3+ 22) + cyryz
+ c4(34 +yt 4 24) + czz(:nzyz + y22? 4 2222) 1)

with ¢; = 0 for the octahedral site, and for a tetrahedral site in Bcc NbH (see
appendix 3) by

Viz,y,z) = ncz’_.,,(:z:2 + ) + c2,322 + e(2? — y™)z2
+ ey (= + yt) + ey 2t + f2Py? + g + 47)2% @)

The coeflicients were determined by least-squares fits to nine, seven and 12 first-
principles data points surrounding a Pd octahedral, tetrahedral and Nb tetrahedral
site, respectively (see figures 3 and 4). Corrections to the eigenstates of a three-
dimensional harmonic oscillator (second-order potential terms) due to the anhar-
monicity of the potentials are calculated using standard perturbation theory (see
appendices 1-3). The fourth-order potential terms lead to first-order perturbation
corrections, and the third-order terms to second-order corrections.

In an alternative approach a finite, three-dimensional Fouricr series was fitted
to all available energy versus displacement data throughout the whole unit cells (see
figures 3 and 4):

Vir) =) V(G)exp(iG-7). ' ' (3)
(<

In contrast to the local potential wells given above, this function takes both the trans-
Jational periodicity of the potential and the saddle points between the different local
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minima into account. For PdH we fitted the Fourier components of 19 independent
stars of reciprocal lattice vectors G to the energies of all 30 different H positions
shown in figure 3. Then the three-dimensional Schridinger equation for H isotopes
in the periodic potential was expanded in plane waves and diagonalized numerically
for the T’ point (k = 0):

2
) (IGI b, + V(G- G’)) A1y (G') = By 9y, (G)- “

Peld My

In this approach for PdH, which corresponds to the one described by Tao et al (1986)
for NbH, anharmonicity is treated completely, not as a perturbation. The low-lying
eigenstates ¢,, can be associated with the corresponding states |u) found for the
local potential wells discussed above. '

- Our calculated zero-point and excitation energies, Eq ooy a0d €pr,,y = Epg |,y —
Eyq ja0qy» for three H isotopes are compiled and compared with experimental data in
the tables 6-8. For the ground and the low excited states it is possible to classify the
states obtained numerically or via perturbation theory by the corresponding states in
harmonic approximation. The index M = n 4 m + I gives the number of energy
quanta, and |mu) indicates the eigenfunction of the excited state (se¢ appendices 2
and 3). For NbH we did not repeat the expensive calculation with the Fourier
potential. Instead we relist the results from Tao et af (1986) for comparison in our
table 6.

The data of table 6 show that for H in Nb the measured vibration energies are
described already quite well by the local polynomial potential in harmonic approxi-
mation (a). Taking the anharmonicity (b) or both anharmonicity and periodicity ((c),
from Tao et a! 1986) of the potential into account does not improve the agreement of
the calculation and experiment significantly. It is concluded that the considered lowest
vibration states are confined to a tetrahedral site in the BCC Nb. The anharmonicity
is weak and can be treated well via perturbation theory.

For vibrations of H around the octahedral site in Pd the energies calculated
with the polynomial potential do not agree with measured INS data, as shown in
table 7. The harmonic approximation (a) yields energies that are significantly too
low. By taking the anharmonicity into account via perturbation theory (b) the energies
become muc. too high. The origin for these discrepancies is the strong anisotropy
and anharmonicity of the adiabatic potential, which is described poorly by a local
polynomial function. The perturbative approach is also questionable in the presence
of strong anharmonicity. In contrast, the vibrational ¢nergies calculated with the
Fourier potential {c}, which is not confined to the local surrounding of an octahedral
site, agree much better with the available INS data. The conclusion is that the
anharmonicity of the potential needs to be taken into account completely already for
the lowest states.

Some remarks are necessary concerning the comparison of calculated and
measured energies. First, in the INS experiments (Rush et @l 1984) the higher exci-
tation energies in Pd were measured in «-phase samples with low H concentrations,
whereas the PAH unit cell used in our calculations corresponds to the 3 phase with
high H concentration. In our calculations with Pd, H supercells (n = 4, 8, 16, 32)
io approach the o phase (Elsdsser er a/ 1991a) we found that the decreasing H con-
centration leads to a reduction of the equilibrium lattice constant of the ideal FCC
lattice. This is connected with a steeper vibrational potential and higher vibration
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Table 6. Zero-point energies Ey jogo) and excitation encrgies e g,y of local tetrahedral
vibrations of hydrogen isotopes in NbH (a = 3.41 A): (e) harmonic approximation;
(b) perturbation theory; (c) solution of Fouricr representation. The meaning of Q)
is specified in appendix 3. The experimental data are taken from Richter and Shapiro
(1980), Rush et al (1981) and Eckert er a! (1983), the calculated data (&) for +-NbH
from Tho et al (1986).

4 ‘D T

Eo'lnuo) (a) 239 169 138

®) 243 171 139

© 23 169 139
€),l001) (3) 126 39 73

®) 114 83 &

@© 113 84 70
Expt. 1221 B6.7X0.9 T2+ 1
eyo10) = 1,100y (@) 176 124 101

®) 165 119 98

© 161 118 98
Expt. 166 £2 120.7+ 0.9 10141
£2,1G) (a) 253 178 146

(b) 223 164 136

© 218 161 136
Expt. 231+2 166 £ 3
€2,]101) = 22‘“111} (a) 302 214 174

) 268 196 163

© 257 195 164
Bxpt. 2804 205£5

energies. By taking lattice relaxations into account we found that local volumes of
the Pd octahedra around the interstitial H in Pd,H and Pd;H were slightly smaller
than for H as in PdH. This is consistent with the experimental observation of Rush ez
al (1984), where for the first excited states of H the measured energies are 69 meV
for the o phase and 60 meV for the 8 phase (see figure 2 in Rush ef al 1984).

Secondly, in the interpretation of their INS spectra, besides the large peak from
the first excitation, e,qy, Rush et af (1984) identified two further structures as three-
fold degenerate excitations e;,, and e,q, (see figure 1 in Rush er a/ 1984). In
a cubic environment, the six degenerate harmonic states with M = 2 split into
three levels: a triply degenerate, E, 5,1y = Ey 191y = By |10y, @ doubly degener-
ate, By 4y = Ejpy, and a single level, £, -, (see appendix 2). Comparing our
calculated vibration energies with the INS spectra of Rush et al (1984) we propose
the following interpretation (see table 7). The two structures at 137 + 2 meV and
136 + 3 meV seem to be the excitations e, |cy and e, |, = &, py, respectively.
The remaining excitations e, ;) = €3 501y = €5,)110y Might be located around 115
= 5 meV where the noise in the spectra does not obviously exclude a third small
structure.

Thirdly, for the lowest vibrational energies of tritium in Pd, one should be aware
of the fact that the enerpy range of phonons of the Pd lattice is measured from
0 to about 23 meV in PdH, ., (Rowe et a/ 1974) and to about 29 meV in pure
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Table 7. Zero-point energies En,muu) and excitation energies ey, () of local octahedral
vibrations of hydrogen isotopes in PdH (a = 4.07 A): for (2), (b), {¢); see caption of
table 6. The meaning of |A), |B} and |C) is specified in appendix 3. The experimental
data are taken from Rush er al (1984)%; o and § denote the phases.

'H D T
Es 000} (@ 50 36 29
n 120 70 52
© B 51 40
€1 f100) = €1,Jo10) = €1,ppa1y  (3) 34 23 20
by 126 70 50
(&) 62 40 2
Expt. 8 60 40
o 69.0+ 0.5 46.5+ 0.5
€2,l011) = €2,1a01} = €2,|110) (a) 68 47 39
(b) 226 127 92
© 117 78 61
Expt. a 1155
CZ.IC) (a) 68 47 39
() 344 186 131
() 132 88 69
Expt. o«  137%2
ﬁz,m) - ez'!B} (a) 68 47 39
{b) 383 206 144
) 147 94 73
Expt. o 15643

Table 8. Zero-point energies E; joony and excitation energies ey .3 of local tetrahedral
vibrations of hydrogen isotopes in PdH (a = 4.07 A): for {a)}, (b}, (c), see caption of

table 6. _
" D T
Eto0y @ ¢ 144 117
(b) 208 146 119
© 203 150 123
ei?fmo) = "'ie,[:ozo) = e:ffom} (x 136 96 78
() 124 S0 75
© 2 ™

Pd (Miller and Brockhouse 1971). It has been suggested that the localization of
the tritium vibrations, whose zero-point energies are close to these ranges, can be
destroyed by resonance with the metal phonons and thus might be not observable
directly (Oppeneer ef al 1988).

Besides the H vibrations around stable octahedral sites in PdH, we also investi-
gated the possibility for metastable H states confined to tetrahedral sites. With the
polynomial potential, zero-point and first excitation energies were calculated in the
harmonic approximation and with perturbation theory. They show that the local po-
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tential around a tetrahedral site is only weakly anharmonic. In table 8 they are listed,
together with energies found with the Fourier potential, which can be associated to
tetrahedral sites via symmetry and convergence arguments. The energies are referred
to the tetrahedral minimum, which is 51 meV above the octahedral minimum (see
figure 3). Metastable bound states at tetrahedral sites can be expected at least if the
zero-point energies are below the depth of the local potential well, which is limited
by the difference of 215 meV between the minimum at T and the saddle-point encrgy
at S,,,. This implies that an occupation of a tetrahedral site is more likely for 3T or
2D than for 'H.

The occupations of interstitial sites in FCC Pd were investigated by means of
ion channeling experiments (Carstanjen 1989). For PdH_ and PdD_ at and above
room temperatures, where the thermal vibration amplitudes of the interstitials around
octahedral sites are already rather large, no evidence was found for occupations of
tetrahedral sites. According to our calculations we would expect to find a channelling
signal along crystalline {100} directions originating from a few interstitials trapped in
metastable tetrahedral sites for the isotope 3T and eventually *D at low temperatures,
where the {100) blocking originating from octahedral-site occupation is less smeared
out by the thermal vibrations. An occupation of tetrahedral sites by *T would also
be compatible with the observed anomajous isotope effect for activation energics of
H diffusion in Pd {(Teichler 1979, Kronmiiller er a/ 1585).

5. Summary

In this paper, which is the second of two papers about our first-principles study
of hydrogen in transition metals, we reported the results of total-energy and force .
calculations for Pd_H supercells with n £ 32 and for Nb, H supercells with n < 4,
using a mixed-basis pseudopotential method, which was outlined in part L

Our project was concerned with the development of a calculational method for
excitation energies of local vibrations of interstitial hydrogen isotopes in transition
metals. To test the capability of our approach we chose Fcc Pd and Bcc Nb for our
study, the two most heavily investigated metal hosts for hydrogen, with a large peool
of existing experimental and theoretical information for comparison.

Within the framework of the Boa and the 1LDa, adiabatic potentials for H in PdH
and NbH were determined. The influence of different stages of lattice relaxations
on the adiabatic potentials in the supercells was discussed. From both total-energy
differences and internal forces in the supercells we deduced that the dominant con-
tribution to lattice relaxations around an interstitial H atom in Pd comes from a local
expansion on the next-neighbour Pd atoms. For H in BCC Nb we found a much
weaker influence of lattice relaxations on the adiabatic potential than in Fcc Pd.

By fitting analytic model potentials to the adiabatic potentials determined from
first principles we calculated vibrational states for hydrogen isotopes in v-NbH and
in A-PdH and studied the influence of anharmonicity.

For NbH we found that excitation energies for several vibrational states, which
were calculated using a simple local potential well in harmonic approximation or
by taking anharmonicity into account as a perturbation, agreed very well both with
earlier calculations using a Fourier fit of the adiabatic potential and a non-perturbative
treatment of the vibrational states and with measured data from INS experiments.

For PdH a simple local potential well and the calculation of vibrational states in
harmonic approximation or via perturbation theory turned out to be quantitatively
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inadequate. Because of the strong anharmonicity and the rather low vibrational
energies, the adiabatic potential had to be represented carefully by a Fourier series.
The excitation energies finally found by solving the proton Schrddinger equation in a
plane-wave representation were in good agreement with experimental dataz and even
allowed us to propose a reinterpretation of measured INS spectra.

The success of our calculations for PdH and NbH encourages us to proceed in
two directions. First, we expect to find reliable vibrational energies as well for other
metals or intermetallic compounds. These may be of use for the interpretation of
diffusion experiments, where no INs data are yet available or are difficult to measure,
e.g.- for hydrogen in Fe because of the low solubility, or for tritium in any metal
because of its toxicity. Second the ab inizio results seem to be reliable enough to be
useful for the calibration of more empirical theories.
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Appendix 1. Perturbation theory for degenerate states

In this appendix we briefly summarize the formalism of time-independent perturbation
theory for partly degenerate vibrational states. One reason is that, although pertur-
bation theory is well known from almost every lecture or textbook about quanturn
mechanics (see e.g. Blochinzew 1985), its application to vibrational states is rapidly
becoming laborious. Therefore we want to provide our derived expressions to the
readership for further use.

The other and main reason, however, for this appendix is that the splitting of
degenerate harmonic states in cubic lattices, which require the rigorous application of
degenerate perturbation theory, is not fully included in earlier publications (Eckert ef
al 1983, Rush e ai 1984, Kronmiiller et al. 1985, Oppenecer ef al 1988). Some authors
give general formulae for arbitrary states which, however, do not take all splittings
into account. There are also discrepancies between the formulae in different papets.
These ambiguities and inconsistencies caused us to rederive carefully the expressions
for energy corrections of some states, taking the degeneracies into account. Further
states can be treated in the same way. But we could not find general formulae for
arbitrary states in cubic lattices that yield all splittings correctly.

The basic equation for degenerate perturbation theory is the secular equation:

S (@9, IV, Yem, = B e, (AL1)

where the potential V, is the anharmonic part of the vibration potential V = V| + V.
The |¢E,°L>5,) are the eigenstates of the harmonic part V, (zeroth order), with the

eigenvalues Eﬁ,?,l, = E'D. The index m labels different harmonic levels, p =1,....,
and f,_ the different degenerate states of one level.
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The first-order energy corrections Em are given by the solution of the secular
determinant:

det l(qbs'?xjplv;l(bgg)v) - Ea(*ri’}tépy =0 (AI.Z)

and the components c™, of the eigenvectors of (Al.1) rotate the zeroth-order basis
set {]¢ )} in the degenerate mth subspace to a new set {|¢:‘°) }} where

POy Z c™ |60y (AL.3)

for which the perturbation matrix becomes diagonal,

(WRLIValeR) = EQL6,, (Al4)
with the first-order energy corrections Em as diagonal elements.

The second-order energy corrections Eﬁﬁ}, of the mth state are obtajned by
summing over all other states ks (k # m):

n (w2l ISR
Enh= D Z (o) (o) =3 Z 20 _ g0 (ALS5)
k(#m)x=1 K(Emyn=1  Lm — Ly

In the last equation the orthogonality and completeness of the basis sets are used,
which follow from the hermiticity of the perturbation matrix (q&(”) |Va[¢>(°) )

Ecnv Criv = 'SN,N' Zcxv Crpt =¢ IR0 (A16)

Appendix 2. Local vibrations of interstitials in a FCcc erystal
The three-dimensional vibrational potential for a light interstitial particle in a FCC
lattice can be described by a polynomial expansion up to fourth order in Cartesian
coordinates (Rush et al 1984):

V(e,y,2) = Vi(a, v, 2) + V(2. v, 2) (A2.1)
with the harmonic part |

Va2, u,2) = ep(a® + 47 + 2%) (A22)
and the Jowest anharmonic terms:
Vi(@,y,2) = caryz + ¢ (x + vt 4 2%) + cpp(a®y® + y7 2% + 2%2%). (A2.3)

The eigenvalues of the harmonic oscillator V, (, ¥, z) are given by

Epmy=c(i+n+tm+l) n,m,l=0,1,2,... (A2.4)
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with the epergy quantum

a = fuw, = h\/(2c2/mH)1/2

and the mass m,; of a hydrogen isotope. The eigenstates |[nmi) of the energy level
M =n+m+1are 1(M + 1)(M + 2)-fold degenerate. In the following we restrict
ourselves to the states with M =0,1,2.

Applying the formalism of degenerate perturbation theory to the anharmonic po-
tential V_ {z, y, 2} it turns out that the third-order potential term does not contribute
10 the first-order energy corrections Ef\})u, and for the second-order corrections E.(ﬁ?p.
the sum in (A1.5) can be separated into two sums containing the matrix elements of
only third- or fourth-order potential terms, respectively. The first-order energy cor-
rections are proportional to the potential parameters ¢,, ¢, and c,,, the second-order
corrections to their squares. The potential parameter c; is zero for the octahedral
interstitial site. But for the tetrahedral site in Pd c, is about one order of magnitude
larger than ¢, and ¢,,. This justifies the approximation to neglect the second-order
corrections originating from c, and c,,. Hence the following energies E,, ., for
the states with M = 0,1, 2 contain the harmonic energies, the first-order corrections
due to the fourth-order potential terms and the second-order corrections due to the
third-order potential terms:

_ 2® o )
Entipy = Enmt + Eag )y + Epg )

Ejjooey = 3+ 30+ §v - 36

wjen

By 1100y = Eyjorey = Evooyy = 30 + IB+Iv—36
Eyjouy = Bajioy = Eypugy = 5o+ 58+ Py — 36
By ay= By =3+ 8+ 3v-§6
Epjoy= o+ B8+ Py -46

with the anharmonic coefficients
B = 3zacy v = §gcy & = xSl /(12hw;)

and z3 = A/myw,. Here |A), | B} and |C) are rotated basis states which diagonalize
the perturbation matrix:

|A) = (1/v/2)(|200) — [020))
|BY = (1/v/6)(]200} + 020) - 2|002))
[C) = (1/v3)(|200) + (020} + |002)).
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Appendix 3. Local vibrations of interstitials in a Bcc crystal

For the vibrations of 2 light particle around a tetrahedral site in a BCC lattice the
potential is approximated by (Eckert ef al 1983):

Viz,y,2) = Vi(z,y,2) + V(=,¥,2) (A3.1)
with

Wz, y,2) = cz.a,-(wz +y7) + Cz,z22 (A3.2)
and

Vi(z,y,2) = e(2? — yh)z + eg (2 + y") + ¢y 2" + F2y” + g(2® + ¥7)2%

(A3.3)
For the harmoric oscillator V| {z, y, z) the energy eigenvalues are given by
EO p=ho (1 +n+m)+ho (41 n,m,l=0,1,2,... (A3.4)

with the energy quanta
2 2
hw, = h(2¢, . [my)Y b, = h(2¢, , [ my)'/
and the partly degenerate eigenstates [nmli).
As in the case of the FCC lattice only fourth-order potential terms yield first-
order corrections to the energies, and second-order corrections can be separated in
each a contribution from third- and fourth-order potential terms. The fourth-order

contribution is again negligibly small compared to the third-order contribution for the
tetrahedral site in niobium. The resulting energies of the vibration states |u) are

Bas iy = Blamay + E3fy + B (A3.5)
The first-order corrections are

Egt[)ooo; = 654,::‘-2 + 3'34,:52 + fe + 2ge ¢,

Eﬁ):oo) = E§.11)01u: = 18¢y €z + 3¢y €5 + 3f €2 + 4ge €,

E&h)oon = 634,m53: + 1564,362 +3fe + 12g¢_¢,

ngl)ﬂll) = Egl}lm) = 18C4,xfi + 15‘-‘4,263 + 3fel +12g¢ ¢,

Egl)ne)} = 30c, €2 + 3¢, €2 + 9fe + 6ge e,
with

€, = izt = hf(2myw,) €

- = %zg =h/(2myw,)

z
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and
Eﬁfﬂq =e—c
ER = Hat b+t [(a+tbtc)?+ 8477
ESI)Q) =i{atbte~—[lat+b+ e)? + 2d21?)
with

a = 42c4'm€i + 3.:4,363 + 5fei + Bge €,
b=6c, €2 +39¢c, €5 + fe& + 10g¢,¢,
e=2f¢
d=2ge_¢,
The rotated basis states [A), | P}, |@} are given by the linear combinations
|A) = (1/v2)(|200) — |020))
|P) = [1/(2p + 1)/2}(p[200) + p|020) -+ [002))
|Q) = [1/(2¢* + 1)!/%](|200) + 020} + [002))
with
p=(1/4d){a - b+c+[(a—b+c)* +8d%/?)
g=(1/4d){a ~b+c—[(a — b+ ¢) + 842 %},
For the second-order corrections we find
Er{le)ono) =0
Eﬁwo} = Efl)aw) = A+ A
E1 |)001) =X+ Ag

E(2|)011} = Eg {)101) = A+ 2A, + 424

2
B =82
E2.|)A) = A1~ A+ 423
E® 2(p+ 1) + 3u
BIPY T 9hw, + (2p? — 1)hw, = 2hw, + (6p% + 1)Aw,
6p*u
4(10 + 1)hw, + (2p? - 1)hw,
E® = 2(g+1)%u 3u
2R T 2hw, + (2¢% — 1w,  2hw, + (6¢2 + 1)kw,
6g° 1
4(q2 + Dhw, +(29° - hw,
with
A, = A= P Y — u=—4eiele, .
17 B, 27 2hw, - hw, 37 2hw, + hw, w7z
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Note added in proof. Klein and Cohen (1991) studied the anharmonicity of hydrogen vibrations and the
isotope effect of T; in PdH with a full-potential LAPw method. Their and our resulls for vibrational
energies coincide well,
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